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A History and introduction

@ J.M. Howie (1966): X a finite set, the mappings from X to X
that are not onto can be presented as a product of
idempotents.

@ J.A. Erdos (1967): Every singular square matrix over a field
can be expressed as a product of idempotent matrices.

@ Laffey (1983): True for matrices over division rings and
commutative euclidean domains.

© Hannah-O'Meara (1989): For some regular rings R, an
element a € R is a product of idempotents if and only if
Rr.ann(a) = l.ann(a)R= R(1 — a)R.

@ Bhaskara Rao (2009): Considered singular matrices over a
commutative PID.

@ Number of idempotents needed (Ballantine, Laffey,
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A History and introduction

Different directions

@ Matrices over rings.
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Different directions
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A History and introduction

Different directions

@ Matrices over rings.
@ Matrices over domains.
© Nonnegative matrices.

@ Zero divisors in rings.
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Examples and remarks

First examples and remarks, |

Lemma

Let R be any ring and let a,b,c € R. Then

® (30)=(os)(0t)(10)
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Examples and remarks

First examples and remarks, |

Lemma

Let R be any ring and let a,b,c € R. Then
(a) a 0\ (1 a 0 0 10
° 00) \oo/\o1)\10)
(b) a ac\ (1 a 0 0 10 1 ¢
0 o) \0O 01 10 0 0 )’
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Examples and remarks

First examples and remarks, |

Lemma

Let R be any ring and let a,b,c € R. Then

(a) a 0\ (1 a 0 0 10

° 00) \oo/\o1)\10)
a ac

® (5 5)-(
ac a

(7 3)-(
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Examples and remarks

First examples and remarks, |

Let R be any ring and let a,b,c € R. Then

® (30)=(os)(0t)(10)
0 (3%)-(33)(3
o (3 8)-()(:
(d) with b € U(R), (3 g) — (b( a) g) can be factorized

as in (c).
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Examples and remarks

First examples and remarks, |l

Lemma

© The following decompositions appear often in the proofs:

B C I C\ (B 0 .
0(0 0)_<0 O) (0 1),whereCIsacolumn.
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Examples and remarks

First examples and remarks, |l

Lemma

© The following decompositions appear often in the proofs:

B C I C\ (B 0 .
0(0 0)_<0 O) (0 1),whereCIsacolumn.

BOiBOIOhR.
°lp o)=l0 1 R o) Where R isarow.
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Examples and remarks

First examples and remarks, |l

Lemma

© The following decompositions appear often in the proofs:

B C I C\ (B 0 .

° (0 0) = (0 O) (0 1), where C is a column.
B 0\ (B O I 0 here R is a r

°lp o)=lo 1)\ g o) whereRisarow.

B C\ (B 0\ [l B7IC
+ 8 e i en (2 €)= (8 ) (75t 53

@ If R is a right Bézout domain then any singular matrix is
similar to a matrix having its last row zero.
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Examples and remarks

First examples and remarks, IlI

Proposition {Alahmadi,Jain, L.}

The following matrices are always product of idempotent matrices

e Singular (0,1) matrices,
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Examples and remarks

First examples and remarks, IlI

Proposition {Alahmadi,Jain, L.}

The following matrices are always product of idempotent matrices
e Singular (0,1) matrices,
@ Strictly upper triangular matrices,

@ Quasi permutation matrices,
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Examples and remarks

First examples and remarks, IlI

Proposition {Alahmadi,Jain, L.}

The following matrices are always product of idempotent matrices
e Singular (0,1) matrices,
@ Strictly upper triangular matrices,

@ Quasi permutation matrices,

@ Quasi elementary matrices.
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Particular rings.

Division rings

Theorem {Laffey}

A singular matrix with coefficients in a division ring is always a
product of idempotent matrices.

Steps of the proof:
C
0 0
@ If n =2, use the decomposition from the introduction.
@ If n > 2 and B is singular then by induction it is a product of
idempotents.
o If B is invertible we can write

B C\_ (0 B 0 0\ [lh1s,1 BIC
0 0/ \0 0)\lh1p1 O 0 0

@ Reduce to a matrix of the form <
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Particular rings.

Steps of the proof for division rings, Il

0 0)=(5 o)

where B’ € Mj,_1 ,—1(D) has its first column zero and D is a
column vector. This means that B’ is singular and the induction
hypothesis implies that B’ is in fact a product of idempotents, say
B' = E; ... E, where E,-2 = E; forany 1 </ < r. We then have

B' D\ (lp1n1 D\ (E O E 0
o o)\ o o)\lo 1)\o 1)
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Particular rings.

local rings

Theorem {Jain, L.}

Let R be a local ring. Suppose that every 2 x 2 matrix over R
having nonzero right or left annihilator is product of idempotents.
Then R must be a valuation domain.
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Particular rings.

Definition

A ring is a right Hermite ring if its f.g. right stably free modules
are free.
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A ring is a right Hermite ring if its f.g. right stably free modules
are free. Equivalently a ring is right Hermite if every right
unimodular row of R" can be completed into an invertible n x n
invertible matrix.

Lemma {Jain, L.}

A singular matrix with coefficients in a right Hermite domain is
similar to a matrix with its last row equal to zero.
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Particular rings.

Definition

A ring is a right Hermite ring if its f.g. right stably free modules
are free. Equivalently a ring is right Hermite if every right
unimodular row of R" can be completed into an invertible n x n
invertible matrix.

Lemma {Jain, L.}

A singular matrix with coefficients in a right Hermite domain is
similar to a matrix with its last row equal to zero.

Assuming moreover that the ring is a GE-ring (i.e. every invertible
matrix is a product of elementary matrices) we "easily” get that

Theorem {Ruitenburg and Jain, Lam, L, }

If R is a GE right Hermite domain then any singular matrix with
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Particular rings.

quasi Euclidean rings

© A pair (a,b) € R? is a right Euclidean pair if there exist
elements (q1,1), ..., (Gni1, rar1) € R? (for some n > 0)
such that a= bgy + 1, b= rig> + r, and

(%)  ric1=rigiy1 + rip1 for 1 <i<n, with r,p 1 =0.
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elements (q1,1), ..., (Gni1, rar1) € R? (for some n > 0)
such that a= bgy + 1, b= rig> + r, and

(%)  ric1=rigiy1 + rip1 for 1 <i<n, with r,p 1 =0.

The notion of a left Euclidean pair is defined similarly.
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Particular rings.

quasi Euclidean rings

© A pair (a,b) € R? is a right Euclidean pair if there exist
elements (q1,1), ..., (Gni1, rar1) € R? (for some n > 0)
such that a= bgy + 1, b= rig> + r, and

(%)  ric1=rigiy1 + rip1 for 1 <i<n, with r,p 1 =0.

The notion of a left Euclidean pair is defined similarly.
A ring R is right quasi-euclidean if every pair (a, b) is a right
Euclidean pair.

@ A ring R is of stable range 1 if for any (a, b) € R? such that
aR + bR = R there exists x € R such that a + bx is invertible.
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Particular rings.

Suppose (a, b) is a right Euclidean pair with a = bg; + n,
b=rigs+rp, and

() ri—1 = rigiy1 + riy1 for 1 <i < n, with r,p 1 =0.
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Particular rings.

Suppose (a, b) is a right Euclidean pair with a = bg; + n,
b= rig> + r, and

() ri—1 = rigiy1 + riy1 for 1 <i < n, with r,p 1 =0.

@ In matrix form we get the following
(a,0) = (72, 0) P(qn+1) - - P(q1)-

where P(q) is the invertible matrix (i’ (1)>
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Particular rings.

Suppose (a, b) is a right Euclidean pair with a = bg; + n,
b= rig> + r, and

() ri—1 = rigiy1 + riy1 for 1 <i < n, with r,p 1 =0.

@ In matrix form we get the following
(a,0) = (72, 0) P(qn+1) - - P(q1)-
where P(q) is the invertible matrix (i’ (1)>
@ Let us develop the right handside product of matrices:
(Ch 1) <q2 1) _ <q1Q2+ 1 Q1>
1 0 1 0 q2 1

Continuing this process we arrive at the contnuant
polynomials but...this is another story!
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Particular rings.

Theorem {Alahmadi, Jain, Lam,

For any ring R, the following are equivalent:
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Particular rings.

Theorem {Alahmadi, Jain, Lam,

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.
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Particular rings.
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For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K-Hermite.
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Particular rings.

Theorem {Alahmadi, Jain, Lam,L.}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.

(B) R is a GE-ring that is right K-Hermite.
(C) R is a GEp-ring that is right K-Hermite.
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Particular rings.

Theorem {Alahmadi, Jain, Lam,L.}

For any ring R, the following are equivalent:

(A) R is right quasi-Euclidean.

(B) R is a GE-ring that is right K-Hermite.

(C) R is a GEp-ring that is right K-Hermite.

(D) Forany a,be R, (a,b) =(r,0)Q for some r € R and
Q € GEx(R).
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Particular rings.

Theorem {Alahmadi, Jain, Lam,L.}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.

(B) R is a GE-ring that is right K-Hermite.

(C) R is a GEp-ring that is right K-Hermite.

(D) Forany a,be R, (a,b) =(r,0)Q for some r € R and
Q € GEx(R).

(E) Forany a,be R, (a,b) = (r,0)Q for some r € R and
Q € Ex(R).
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Particular rings.

More properties

Theorem {Alahmadi, Jain, Lam,L.}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
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Particular rings.

More properties

Theorem {Alahmadi, Jain, Lam,L.}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.
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Particular rings.

More properties

Theorem {Alahmadi, Jain, Lam,L.}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is right quasi-Euclidean then R/ is right
quasi-Euclidean.
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Particular rings.

More properties

Theorem {Alahmadi, Jain, Lam,L.}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is right quasi-Euclidean then R/ is right
quasi-Euclidean.

(d) Let R be a right Bézout ring and / be any ideal contained in
the Jacobson radical J(R). R/l is right quasi-Euclidean iff R
is right quasi Euclidean.
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Particular rings.

More properties

Theorem {Alahmadi, Jain, Lam,L.}

(a) Any unit regular ring is (right and left) quasi-Euclidean.

(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is right quasi-Euclidean then R/ is right
quasi-Euclidean.

(d) Let R be a right Bézout ring and / be any ideal contained in
the Jacobson radical J(R). R/l is right quasi-Euclidean iff R
is right quasi Euclidean.

(e) A right Bézout semi-local ring is right quasi-euclidean.
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Particular rings.

More properties

Theorem {Alahmadi, Jain, Lam,L.}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is right quasi-Euclidean then R/ is right
quasi-Euclidean.

(d) Let R be a right Bézout ring and / be any ideal contained in
the Jacobson radical J(R). R/l is right quasi-Euclidean iff R
is right quasi Euclidean.

(e) A right Bézout semi-local ring is right quasi-euclidean.

(f) If R and S are two right quasi-Euclidan rings then R x S is
right quasi-Euclidean.
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Particular rings.

Theorem {Alahmadi, Jain, Lam,L.}
A domain R is right quasi-Euclidean if and only if R is a

projective-free GEj-ring such that every matrix <8 g) is a

product of idempotents in My (R).
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Particular rings.

Theorem {Alahmadi, Jain, Lam,L.}
A domain R is right quasi-Euclidean if and only if R is a

projective-free GEj-ring such that every matrix <8 g) is a
product of idempotents in My (R).

Theorem {Alahmadi, Jain, Lam,L.}

Let A € M,(R) where R is a right and left quasi Euclidean ring.
Then:

@ /(A) # 0 if and only of r(A) # 0.
@ If /(A) # 0 then A is a product of idempotent matrices.

The proof of (2) in the above theorem follows the line of the one
given by Laffey given for classical commutative Euclidean domains.
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Product of elementary matrices vs. product of Idempotent matrices

The importance of the GE property for decomposing matrices into
idempotents can be easily seen from the following somewhat
technical result:

Lemma
If R is a GE ring and B € GL,(R), then the matrix

(0 o)

is a product of idempotent matrices.
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Product of elementary matrices vs. product of Idempotent matrices

The importance of the GE property for decomposing matrices into
idempotents can be easily seen from the following somewhat
technical result:

Lemma
If R is a GE ring and B € GL,(R), then the matrix

(0 o)

is a product of idempotent matrices.

Salce and Zanardo analyzed the relation between the two
decompositions. They studied the case of commutative domains
but their results were generalized to a noncommutative domains by
Facchini and Leroy. To present the latter result we need to
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Product of elementary matrices vs. product of Idempotent matrices

o Let A, B, C be three right R-modules and
a: A— B, B: B— C be homomorphisms. We say that the
pair (o, 3) is a consecutive pair if im(«) & ker(3) = B
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Product of elementary matrices vs. product of Idempotent matrices

o Let A, B, C be three right R-modules and
a: A— B, B: B— C be homomorphisms. We say that the
pair (o, 3) is a consecutive pair if im(«) & ker(3) = B

e We say that a ring R is right n-reqular if for every n x n
invertible matrix M = (b;;) € M,(R) there exists some
i,j=1,2,...,nsuch that r(b;) = 0.
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Product of elementary matrices vs. product of Idempotent matrices

o Let A, B, C be three right R-modules and
a: A— B, B: B— C be homomorphisms. We say that the
pair (o, 3) is a consecutive pair if im(«) & ker(3) = B

e We say that a ring R is right n-reqular if for every n x n
invertible matrix M = (b;;) € M,(R) there exists some
i,j=1,2,...,nsuch that r(b;) = 0.

@ Let r,n be integers, 0 < r < n. For a ring R we define
Fnr={ACP RE| A= R} and RR/A= R "}
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Product of elementary matrices vs. product of Idempotent matrices

Theorem {Facchini, L.}

R a ring with IBN and n > 1. Suppose R is m-right regular for

every m < n and that for any two decompositions of

R"=A® X =Y & B with A, B free right of ranks, respectively,

n—1,1, the submodules X, Y are free right R-modules. T.F.A.E.:

(HI,1) For every free direct summands A C%® R and B C% R, with

A, B free R-modules of rank n — 1,1 respectively, there exists
an endomorphism 8 of R} with im(8) = A and ker(5) = B,
which is a product 8 = €3 ...¢ex of consecutive idempotent
(Fn,n—1, Fn,1)-endomorphisms.
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Product of elementary matrices vs. product of Idempotent matrices

Theorem {Facchini, L.}

R a ring with IBN and n > 1. Suppose R is m-right regular for
every m < n and that for any two decompositions of
R"=A® X =Y & B with A, B free right of ranks, respectively,
n—1,1, the submodules X, Y are free right R-modules. T.F.A.E.:
(HI,1) For every free direct summands A C%® R and B C% R, with
A, B free R-modules of rank n — 1,1 respectively, there exists
an endomorphism 8 of R} with im(8) = A and ker(5) = B,
which is a product 8 = €3 ...¢ex of consecutive idempotent
(Fn,n—1, Fn,1)-endomorphisms.
(GE,) Every invertible n x n matrix is a product of elementary
matrices.
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Nonnegative singular matrices

Question and particular matrices

Main Question : Can real nonnegative singular matrices be
decomposed into product of nonnegative idempotents 7
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Nonnegative singular matrices

Question and particular matrices

Main Question : Can real nonnegative singular matrices be
decomposed into product of nonnegative idempotents 7

Lemma

Particular matrices

(a) If B € Mpxn(RT) is an n x n matrix which is a product of
nonnegative idempotents, then the same is true for the matrix

<§ g) where C € M,»1(R™) and the other blocks are of

appropriate sizes.

(b) If A€ M,(R) (resp. A€ M,(RT)), n> 3, has all its it" rows
and columns zero whenever i > 3, then A is a product of
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Nonnegative singular matrices

Rank one

Proposition {Alahmadi,Jain, Sathaye, L.}

Let A€ M,(RT), n> 1, be a nonnegative matrix of rank 1. Then
A is a product of nonnegative idempotent matrices.
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Nonnegative singular matrices

Rank one

Proposition {Alahmadi,Jain, Sathaye, L.}

Let A€ M,(RT), n> 1, be a nonnegative matrix of rank 1. Then
A is a product of nonnegative idempotent matrices.

Remark (A.J.L.,S.)

It can be shown that in fact rank 1 nonnegative matrices can be
decomposed into a product of three nonnegative idempotent
matrices.

N
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Nonnegative singular matrices

Rank two

Theorem {A.,J.,L.}

Let A€ M,(RT), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.
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Nonnegative singular matrices

Rank two

Theorem {A.,J.,L.}

Let A€ M,(RT), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows
of the matrix can be expressed as nonnegative linear combinations
of two generating rows.
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Nonnegative singular matrices

Rank two

Theorem {A.,J.,L.}

Let A€ M,(RT), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows
of the matrix can be expressed as nonnegative linear combinations
of two generating rows.

This theorem is no longer valid for matrices with rank > 2.
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Nonnegative singular matrices

counter-example

For singular nonnegative matrices of higher rank the decomposition
does not necessarily exist:

, wherea € RT, a #0.

Q © oo
oQ Q o
S oo o

!
0
!
0

If A, = E;...E, is such that E,-2 = E; € M,(R") then A, = ALE,
and a direct computation shows that E, = Id.. Remark that A% is
a positive doubly stochastic matrix.
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special families of nonnegative matrices

Nilpotent matrices

Proposition {Jain, Goel}

If Ais Nonnegative nilpotent there exists a permutation matrix
such that PAP! is an upper triangular nonnegative matrix.
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special families of nonnegative matrices

Nilpotent matrices

Proposition {Jain, Goel}

If Ais Nonnegative nilpotent there exists a permutation matrix
such that PAP! is an upper triangular nonnegative matrix.

Corollary

Nonnegative nilpotent matrices are product of nonnegative
idempotent matrices.
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special families of nonnegative matrices

Hannah and O'Meara

Hannah and O’Meara published several interesting results on the
decomposition of nonunit elements of a regular ring into
idempotents.

Theorem

If an element a of a regular ring R is a product of k idempotents
then (1 — a)R < k.rann(a).

| A\

Corollary

An element a in a unit regular ring is a product of idempotents if
and only if R.rann(a) = R(1 — a)R.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam  Singular matrices as products of idempotents matrices



special families of nonnegative matrices

Hannah and O'Meara also proved the following remarkable result:

Let R be one of the following rings: (i) unit regular, (ii) right
continuous, or (iii) a factor ring of a right self-injective ring. Then
a is a product of idempotents if and only if

R.rann(a) = R(1 — a)R = lann(a).R
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special families of nonnegative matrices

A ring R is separative if for all finitely generated projective
modules, A, B

APA~APB~B®d B implies A~B

Equivalently, 2A = 2B implies A= B

Let R be a regular ring. Then the separativity of R is equivalent to
the fact that an element is a product of idempotents if and only of
R.rann(a) = R(1 — a)R = lann(a).R

It is worthy to mention that no example of a regular ring that is
not separative is known. This is certainly one of the most
important open problems in regular rings.
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special families of nonnegative matrices

Thank you for your attention.
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