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1 J.M. Howie (1966): X a finite set, the mappings from X to X
that are not onto can be presented as a product of
idempotents.

2 J.A. Erdos (1967): Every singular square matrix over a field
can be expressed as a product of idempotent matrices.

3 Laffey (1983): True for matrices over division rings and
commutative euclidean domains.

4 Hannah-O’Meara (1989): For some regular rings R, an
element a ∈ R is a product of idempotents if and only if
Rr .ann(a) = l .ann(a)R= R(1− a)R.

5 Bhaskara Rao (2009): Considered singular matrices over a
commutative PID.

6 Number of idempotents needed (Ballantine, Laffey,
Lenders-Xue)
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2 Matrices over domains.
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4 Zero divisors in rings.
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First examples and remarks, I

Lemma

Let R be any ring and let a, b, c ∈ R. Then

(a)

(
a 0
0 0

)
=

(
1 a
0 0

)(
0 0
0 1

)(
1 0
1 0

)
,

(b)

(
a ac
0 0

)
=

(
1 a
0 0

)(
0 0
0 1

)(
1 0
1 0

)(
1 c
0 0

)
,

(c)

(
ac a
0 0

)
=

(
1 a
0 0

)(
0 0
c 1

)
,

(d) with b ∈ U(R),

(
a b
0 0

)
=

(
b(b−1a) b

0 0

)
can be factorized

as in (c).
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First examples and remarks, II

Lemma

1 The following decompositions appear often in the proofs:(
B C
0 0

)
=

(
I C
0 0

)(
B 0
0 1

)
, where C is a column.

(
B 0
R 0

)
=

(
B 0
0 1

)(
I 0
R 0

)
, where R is a row.

If B ∈ GLn−1(R) then

(
B C
0 0

)
=

(
B 0
0 0

)(
In−1 B−1C

0 0

)
2 If R is a right Bézout domain then any singular matrix is

similar to a matrix having its last row zero.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Singular matrices as products of idempotents matrices
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First examples and remarks, III

Proposition {Alahmadi,Jain, L.}
The following matrices are always product of idempotent matrices

Singular (0,1) matrices,

Strictly upper triangular matrices,

Quasi permutation matrices,

Quasi elementary matrices.
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Division rings

Theorem {Laffey}
A singular matrix with coefficients in a division ring is always a
product of idempotent matrices.

Steps of the proof:

Reduce to a matrix of the form

(
B C
0 0

)
If n = 2, use the decomposition from the introduction.
If n > 2 and B is singular then by induction it is a product of
idempotents.
If B is invertible we can write(

B C
0 0

)
=

(
0 B
0 0

)(
0 0

In−1,n−1 0

)(
In−1,n−1 B−1C

0 0

)
Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Singular matrices as products of idempotents matrices
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Steps of the proof for division rings, II

(
0 B
0 0

)
=

(
B ′ D
0 0

)
where B ′ ∈ Mn−1,n−1(D) has its first column zero and D is a
column vector. This means that B ′ is singular and the induction
hypothesis implies that B ′ is in fact a product of idempotents, say
B ′ = E1 . . .Er where E 2

i = Ei for any 1 ≤ i ≤ r . We then have(
B ′ D
0 0

)
=

(
In−1,n−1 D

0 0

)(
E1 0
0 1

)
. . .

(
Er 0
0 1

)
.
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local rings

Theorem {Jain, L.}
Let R be a local ring. Suppose that every 2× 2 matrix over R
having nonzero right or left annihilator is product of idempotents.
Then R must be a valuation domain.
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Definition

A ring is a right Hermite ring if its f.g. right stably free modules
are free.

Equivalently a ring is right Hermite if every right
unimodular row of Rn can be completed into an invertible n × n
invertible matrix.

Lemma {Jain, L.}
A singular matrix with coefficients in a right Hermite domain is
similar to a matrix with its last row equal to zero.

Assuming moreover that the ring is a GE -ring (i.e. every invertible
matrix is a product of elementary matrices) we ”easily” get that

Theorem {Ruitenburg and Jain, Lam, L, }
If R is a GE right Hermite domain then any singular matrix with
coefficients in R is a product of idempotent matrices.
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quasi Euclidean rings

Definitions

1 A pair (a, b) ∈ R2 is a right Euclidean pair if there exist
elements (q1, r1), ... , (qn+1, rn+1) ∈ R2 (for some n ≥ 0)
such that a = bq1 + r1, b = r1q2 + r2, and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

The notion of a left Euclidean pair is defined similarly.
A ring R is right quasi-euclidean if every pair (a, b) is a right
Euclidean pair.

2 A ring R is of stable range 1 if for any (a, b) ∈ R2 such that
aR + bR = R there exists x ∈ R such that a + bx is invertible.

Let us now give some examples;
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Suppose (a, b) is a right Euclidean pair with a = bq1 + r1,
b = r1q2 + r2, and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

In matrix form we get the following

(a, b) = (rn, 0)P(qn+1) · · ·P(q1).

where P(q) is the invertible matrix

(
q 1
1 0

)
.

Let us develop the right handside product of matrices:(
q1 1
1 0

)(
q2 1
1 0

)
=

(
q1q2 + 1 q1

q2 1

)
Continuing this process we arrive at the contnuant
polynomials but...this is another story!
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Theorem {Alahmadi, Jain, Lam,L.}

For any ring R, the following are equivalent:

(A) R is right quasi-Euclidean.

(B) R is a GE-ring that is right K-Hermite.

(C) R is a GE2-ring that is right K-Hermite.

(D) For any a, b ∈ R, (a, b) = (r , 0)Q for some r ∈ R and
Q ∈ GE2(R).

(E) For any a, b ∈ R, (a, b) = (r , 0)Q for some r ∈ R and
Q ∈ E2(R).
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More properties

Theorem {Alahmadi, Jain, Lam,L.}
(a) Any unit regular ring is (right and left) quasi-Euclidean.

(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is right quasi-Euclidean then R/I is right
quasi-Euclidean.

(d) Let R be a right Bézout ring and I be any ideal contained in
the Jacobson radical J(R). R/I is right quasi-Euclidean iff R
is right quasi Euclidean.

(e) A right Bézout semi-local ring is right quasi-euclidean.

(f) If R and S are two right quasi-Euclidan rings then R × S is
right quasi-Euclidean.
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Theorem {Alahmadi, Jain, Lam,L.}
A domain R is right quasi-Euclidean if and only if R is a

projective-free GE2-ring such that every matrix

(
a b
0 0

)
is a

product of idempotents in M2(R).

Theorem {Alahmadi, Jain, Lam,L.}
Let A ∈ Mn(R) where R is a right and left quasi Euclidean ring.
Then:

1 l(A) 6= 0 if and only of r(A) 6= 0.

2 If l(A) 6= 0 then A is a product of idempotent matrices.

The proof of (2) in the above theorem follows the line of the one
given by Laffey given for classical commutative Euclidean domains.
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The importance of the GE property for decomposing matrices into
idempotents can be easily seen from the following somewhat
technical result:

Lemma

If R is a GE ring and B ∈ GLn(R), then the matrix(
B C
0 0

)
is a product of idempotent matrices.

Salce and Zanardo analyzed the relation between the two
decompositions. They studied the case of commutative domains
but their results were generalized to a noncommutative domains by
Facchini and Leroy. To present the latter result we need to
introduce a few notions.
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Definitions

Let A,B,C be three right R-modules and
α : A→ B, β : B → C be homomorphisms. We say that the
pair (α, β) is a consecutive pair if im(α)⊕ ker(β) = B

We say that a ring R is right n-regular if for every n × n
invertible matrix M = (bij) ∈ Mn(R) there exists some
i , j = 1, 2, . . . , n such that r(bij) = 0.

Let r , n be integers, 0 ≤ r ≤ n. For a ring R we define
Fn,r := {A ⊆⊕ Rn

R | A ∼= R r
R and Rn

R/A
∼= Rn−r

R }
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Theorem {Facchini, L.}

R a ring with IBN and n ≥ 1. Suppose R is m-right regular for
every m ≤ n and that for any two decompositions of
Rn = A⊕ X = Y ⊕ B with A,B free right of ranks, respectively,
n− 1, 1, the submodules X ,Y are free right R-modules. T.F.A.E.:

(HIn,1) For every free direct summands A ⊆⊕ Rn
R and B ⊆⊕ Rn

R , with
A,B free R-modules of rank n − 1, 1 respectively, there exists
an endomorphism β of Rn

R with im(β) = A and ker(β) = B,
which is a product β = ε1 . . . εk of consecutive idempotent
(Fn,n−1,Fn,1)-endomorphisms.

(GEn) Every invertible n × n matrix is a product of elementary
matrices.
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Theorem {Facchini, L.}

R a ring with IBN and n ≥ 1. Suppose R is m-right regular for
every m ≤ n and that for any two decompositions of
Rn = A⊕ X = Y ⊕ B with A,B free right of ranks, respectively,
n− 1, 1, the submodules X ,Y are free right R-modules. T.F.A.E.:

(HIn,1) For every free direct summands A ⊆⊕ Rn
R and B ⊆⊕ Rn

R , with
A,B free R-modules of rank n − 1, 1 respectively, there exists
an endomorphism β of Rn

R with im(β) = A and ker(β) = B,
which is a product β = ε1 . . . εk of consecutive idempotent
(Fn,n−1,Fn,1)-endomorphisms.

(GEn) Every invertible n × n matrix is a product of elementary
matrices.
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Question and particular matrices

Question

Main Question : Can real nonnegative singular matrices be
decomposed into product of nonnegative idempotents ?

Lemma

Particular matrices

(a) If B ∈ Mn×n(R+) is an n × n matrix which is a product of
nonnegative idempotents, then the same is true for the matrix(
B C
0 0

)
where C ∈ Mn×1(R+) and the other blocks are of

appropriate sizes.

(b) If A ∈ Mn(R) (resp. A ∈ Mn(R+)), n ≥ 3, has all its i th rows
and columns zero whenever i ≥ 3, then A is a product of
(resp. nonnegative ) idempotent matrices.
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Rank one

Proposition {Alahmadi,Jain, Sathaye, L.}
Let A ∈ Mn(R+), n > 1, be a nonnegative matrix of rank 1. Then
A is a product of nonnegative idempotent matrices.

Remark (A.,J.L.,S.)

It can be shown that in fact rank 1 nonnegative matrices can be
decomposed into a product of three nonnegative idempotent
matrices.
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Rank two

Theorem {A.,J.,L.}
Let A ∈ Mn(R+), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows
of the matrix can be expressed as nonnegative linear combinations
of two generating rows.
This theorem is no longer valid for matrices with rank > 2.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Singular matrices as products of idempotents matrices



Plan
A History and introduction

Examples and remarks
Particular rings.

Product of elementary matrices vs. product of Idempotent matrices
Nonnegative singular matrices

special families of nonnegative matrices

Rank two

Theorem {A.,J.,L.}
Let A ∈ Mn(R+), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows
of the matrix can be expressed as nonnegative linear combinations
of two generating rows.

This theorem is no longer valid for matrices with rank > 2.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Singular matrices as products of idempotents matrices



Plan
A History and introduction

Examples and remarks
Particular rings.

Product of elementary matrices vs. product of Idempotent matrices
Nonnegative singular matrices

special families of nonnegative matrices

Rank two

Theorem {A.,J.,L.}
Let A ∈ Mn(R+), n > 2, be a nonnegative singular matrix of rank
2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows
of the matrix can be expressed as nonnegative linear combinations
of two generating rows.
This theorem is no longer valid for matrices with rank > 2.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Singular matrices as products of idempotents matrices



Plan
A History and introduction

Examples and remarks
Particular rings.

Product of elementary matrices vs. product of Idempotent matrices
Nonnegative singular matrices

special families of nonnegative matrices

counter-example

For singular nonnegative matrices of higher rank the decomposition
does not necessarily exist:

Example

Aα :=


α α 0 0
0 0 α α
α 0 α 0
0 α 0 α

 , where α ∈ R+, α 6= 0.

If Aα = E1 . . .En is such that E 2
i = Ei ∈ Mn(R+) then Aα = AαEn

and a direct computation shows that En = Id .. Remark that A 1
2

is

a positive doubly stochastic matrix.
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Nilpotent matrices

Proposition {Jain, Goel}
If A is Nonnegative nilpotent there exists a permutation matrix
such that PAPt is an upper triangular nonnegative matrix.

Corollary

Nonnegative nilpotent matrices are product of nonnegative
idempotent matrices.
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Hannah and O’Meara

Hannah and O’Meara published several interesting results on the
decomposition of nonunit elements of a regular ring into
idempotents.

Theorem

If an element a of a regular ring R is a product of k idempotents
then (1− a)R ≤ k .rann(a).

Corollary

An element a in a unit regular ring is a product of idempotents if
and only if R.rann(a) = R(1− a)R.
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Hannah and O’Meara also proved the following remarkable result:

Theorem

Let R be one of the following rings: (i) unit regular, (ii) right
continuous, or (iii) a factor ring of a right self-injective ring. Then
a is a product of idempotents if and only if

R.rann(a) = R(1− a)R = lann(a).R
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A ring R is separative if for all finitely generated projective
modules, A,B

A⊕ A ' A⊕ B ' B ⊕ B implies A ' B

Equivalently, 2A ∼= 2B implies A ∼= B

Theorem

Let R be a regular ring. Then the separativity of R is equivalent to
the fact that an element is a product of idempotents if and only of
R.rann(a) = R(1− a)R = lann(a).R

It is worthy to mention that no example of a regular ring that is
not separative is known. This is certainly one of the most
important open problems in regular rings.
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Thank you for your attention.
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