International Conference on Recent Achievements

in Mathematical Science
YAZD, January 2019
André Leroy, Université d'Artois, France
Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam.

Plan

A History and introduction.

Plan

A History and introduction.

B First examples and remarks.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.
D Singular matrices over local rings.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.
D Singular matrices over local rings.
E Hermite domains.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.
D Singular matrices over local rings.
E Hermite domains.
F Quasi-Euclidean rings.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.
D Singular matrices over local rings.
E Hermite domains.
F Quasi-Euclidean rings.
G GE-rings.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.
D Singular matrices over local rings.
E Hermite domains.
F Quasi-Euclidean rings.
G GE-rings.
H Nonnegative singular matrices.

Plan

A History and introduction.
B First examples and remarks.
C Singular matrices over division rings.
D Singular matrices over local rings.
E Hermite domains.
F Quasi-Euclidean rings.
G GE-rings.
H Nonnegative singular matrices.
I Hannah and O'Meara's works.

Names

(1) J.M. Howie (1966): X a finite set, the mappings from X to X that are not onto can be presented as a product of idempotents.

Names

(1) J.M. Howie (1966): X a finite set, the mappings from X to X that are not onto can be presented as a product of idempotents.
(2) J.A. Erdos (1967): Every singular square matrix over a field can be expressed as a product of idempotent matrices.

Names

(1) J.M. Howie (1966): X a finite set, the mappings from X to X that are not onto can be presented as a product of idempotents.
(2) J.A. Erdos (1967): Every singular square matrix over a field can be expressed as a product of idempotent matrices.
(3) Laffey (1983): True for matrices over division rings and commutative euclidean domains.

Names

(1) J.M. Howie (1966): X a finite set, the mappings from X to X that are not onto can be presented as a product of idempotents.
(2) J.A. Erdos (1967): Every singular square matrix over a field can be expressed as a product of idempotent matrices.
(3) Laffey (1983): True for matrices over division rings and commutative euclidean domains.
(9) Hannah-O'Meara (1989): For some regular rings R, an element $a \in R$ is a product of idempotents if and only if $\operatorname{Rr} . a n n(a)=I . a n n(a) R=R(1-a) R$.

Names

(1) J.M. Howie (1966): X a finite set, the mappings from X to X that are not onto can be presented as a product of idempotents.
(2) J.A. Erdos (1967): Every singular square matrix over a field can be expressed as a product of idempotent matrices.
(3) Laffey (1983): True for matrices over division rings and commutative euclidean domains.
(9) Hannah-O'Meara (1989): For some regular rings R, an element $a \in R$ is a product of idempotents if and only if $R r . a n n(a)=I \cdot a n n(a) R=R(1-a) R$.
(6) Bhaskara Rao (2009): Considered singular matrices over a commutative PID.

Names

(1) J.M. Howie (1966): X a finite set, the mappings from X to X that are not onto can be presented as a product of idempotents.
(2) J.A. Erdos (1967): Every singular square matrix over a field can be expressed as a product of idempotent matrices.
(3) Laffey (1983): True for matrices over division rings and commutative euclidean domains.
(9) Hannah-O'Meara (1989): For some regular rings R, an element $a \in R$ is a product of idempotents if and only if $R r . a n n(a)=I \cdot a n n(a) R=R(1-a) R$.
(5) Bhaskara Rao (2009): Considered singular matrices over a commutative PID.
(6) Number of idempotents needed (Ballantine, Laffey,

Different directions

(1) Matrices over rings.

Different directions

(1) Matrices over rings.
(2) Matrices over domains.

Different directions

(1) Matrices over rings.
(2) Matrices over domains.
(3) Nonnegative matrices.

Different directions

(1) Matrices over rings.
(2) Matrices over domains.
(3) Nonnegative matrices.
(3) Zero divisors in rings.

First examples and remarks, I

Lemma

Let R be any ring and let $a, b, c \in R$. Then (a) $\quad\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$,

First examples and remarks, I

Lemma

Let R be any ring and let $a, b, c \in R$. Then
(a) $\quad\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$,
(b) $\left(\begin{array}{cc}a & a c \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right)$,

First examples and remarks, I

Lemma

Let R be any ring and let $a, b, c \in R$. Then
(a) $\quad\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$,
(b) $\left(\begin{array}{cc}a & a c \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right)$,
(c) $\left(\begin{array}{cc}a c & a \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ c & 1\end{array}\right)$,

First examples and remarks, I

Lemma

Let R be any ring and let $a, b, c \in R$. Then
(a) $\quad\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$,
(b) $\left(\begin{array}{cc}a & a c \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right)$,
(c) $\left(\begin{array}{cc}a c & a \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ c & 1\end{array}\right)$,
(d) with $b \in U(R),\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}b\left(b^{-1} a\right) & b \\ 0 & 0\end{array}\right)$ can be factorized as in (c).

First examples and remarks, I

Lemma

Let R be any ring and let $a, b, c \in R$. Then
(a) $\quad\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$,
(b) $\left(\begin{array}{cc}a & a c \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right)$,
(c) $\left(\begin{array}{cc}a c & a \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ c & 1\end{array}\right)$,
(d) with $b \in U(R),\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}b\left(b^{-1} a\right) & b \\ 0 & 0\end{array}\right)$ can be factorized as in (c).

First examples and remarks, II

Lemma

(1) The following decompositions appear often in the proofs:

$$
\text { - }\left(\begin{array}{ll}
B & C \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & C \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right) \text {, where } C \text { is a column. }
$$

First examples and remarks, II

Lemma

(1) The following decompositions appear often in the proofs:

$$
\begin{aligned}
& -\left(\begin{array}{ll}
B & C \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & C \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right) \text {, where } C \text { is a column. } \\
& -\left(\begin{array}{ll}
B & 0 \\
R & 0
\end{array}\right)=\left(\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
R & 0
\end{array}\right) \text {, where } R \text { is a row. }
\end{aligned}
$$

First examples and remarks, II

Lemma

(1) The following decompositions appear often in the proofs:

- $\left(\begin{array}{ll}B & C \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & C \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right)$, where C is a column.
- $\left(\begin{array}{ll}B & 0 \\ R & 0\end{array}\right)=\left(\begin{array}{ll}B & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}l & 0 \\ R & 0\end{array}\right)$, where R is a row.
- If $B \in G L_{n-1}(R)$ then $\left(\begin{array}{cc}B & C \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}B & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}I_{n-1} & B^{-1} C \\ 0 & 0\end{array}\right)$
(2) If R is a right Bézout domain then any singular matrix is similar to a matrix having its last row zero.

First examples and remarks, III

Proposition \{Alahmadi, Jain, L.\}

The following matrices are always product of idempotent matrices

- Singular $(0,1)$ matrices,

First examples and remarks, III

Proposition \{Alahmadi, Jain, L.\}

The following matrices are always product of idempotent matrices

- Singular $(0,1)$ matrices,
- Strictly upper triangular matrices,

First examples and remarks, III

Proposition \{Alahmadi, Jain, L.\}

The following matrices are always product of idempotent matrices

- Singular $(0,1)$ matrices,
- Strictly upper triangular matrices,
- Quasi permutation matrices,

First examples and remarks, III

Proposition \{Alahmadi, Jain, L.\}

The following matrices are always product of idempotent matrices

- Singular $(0,1)$ matrices,
- Strictly upper triangular matrices,
- Quasi permutation matrices,
- Quasi elementary matrices.

Division rings

Theorem \{Laffey\}

A singular matrix with coefficients in a division ring is always a product of idempotent matrices.

Steps of the proof:

- Reduce to a matrix of the form $\left(\begin{array}{ll}B & C \\ 0 & 0\end{array}\right)$
- If $n=2$, use the decomposition from the introduction.
- If $n>2$ and B is singular then by induction it is a product of idempotents.
- If B is invertible we can write

$$
\left(\begin{array}{ll}
B & C \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
I_{n-1, n-1} & 0
\end{array}\right)\left(\begin{array}{cc}
I_{n-1, n-1} & B^{-1} C \\
0 & 0
\end{array}\right)
$$

Steps of the proof for division rings, II

$$
\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
B^{\prime} & D \\
0 & 0
\end{array}\right)
$$

where $B^{\prime} \in M_{n-1, n-1}(D)$ has its first column zero and D is a column vector. This means that B^{\prime} is singular and the induction hypothesis implies that B^{\prime} is in fact a product of idempotents, say $B^{\prime}=E_{1} \ldots E_{r}$ where $E_{i}^{2}=E_{i}$ for any $1 \leq i \leq r$. We then have

$$
\left(\begin{array}{cc}
B^{\prime} & D \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{n-1, n-1} & D \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
E_{1} & 0 \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
E_{r} & 0 \\
0 & 1
\end{array}\right) .
$$

local rings

Theorem \{Jain, L. $\}$

Let R be a local ring. Suppose that every 2×2 matrix over R having nonzero right or left annihilator is product of idempotents. Then R must be a valuation domain.

Definition

A ring is a right Hermite ring if its f.g. right stably free modules are free.

Definition

A ring is a right Hermite ring if its f.g. right stably free modules are free. Equivalently a ring is right Hermite if every right unimodular row of R^{n} can be completed into an invertible $n \times n$ invertible matrix.

Definition

A ring is a right Hermite ring if its f.g. right stably free modules are free. Equivalently a ring is right Hermite if every right unimodular row of R^{n} can be completed into an invertible $n \times n$ invertible matrix.

Lemma \{Jain, L.\}

A singular matrix with coefficients in a right Hermite domain is similar to a matrix with its last row equal to zero.

Definition

A ring is a right Hermite ring if its f.g. right stably free modules are free. Equivalently a ring is right Hermite if every right unimodular row of R^{n} can be completed into an invertible $n \times n$ invertible matrix.

Lemma \{Jain, L.\}

A singular matrix with coefficients in a right Hermite domain is similar to a matrix with its last row equal to zero.

Assuming moreover that the ring is a GE-ring (i.e. every invertible matrix is a product of elementary matrices) we "easily" get that

Theorem \{Ruitenburg and Jain, Lam, L, \}

If R is a $G E$ right Hermite domain then any singular matrix with

quasi Euclidean rings

Definitions

(1) A pair $(a, b) \in R^{2}$ is a right Euclidean pair if there exist elements $\left(q_{1}, r_{1}\right), \ldots,\left(q_{n+1}, r_{n+1}\right) \in R^{2}$ (for some $\left.n \geq 0\right)$ such that $a=b q_{1}+r_{1}, b=r_{1} q_{2}+r_{2}$, and
(*) $\quad r_{i-1}=r_{i} q_{i+1}+r_{i+1}$ for $1<i \leq n$, with $r_{n+1}=0$.

quasi Euclidean rings

Definitions

(1) A pair $(a, b) \in R^{2}$ is a right Euclidean pair if there exist elements $\left(q_{1}, r_{1}\right), \ldots,\left(q_{n+1}, r_{n+1}\right) \in R^{2}$ (for some $\left.n \geq 0\right)$ such that $a=b q_{1}+r_{1}, b=r_{1} q_{2}+r_{2}$, and
(*) $\quad r_{i-1}=r_{i} q_{i+1}+r_{i+1}$ for $1<i \leq n$, with $r_{n+1}=0$.

The notion of a left Euclidean pair is defined similarly.

quasi Euclidean rings

Definitions

(1) A pair $(a, b) \in R^{2}$ is a right Euclidean pair if there exist elements $\left(q_{1}, r_{1}\right), \ldots,\left(q_{n+1}, r_{n+1}\right) \in R^{2}$ (for some $\left.n \geq 0\right)$ such that $a=b q_{1}+r_{1}, b=r_{1} q_{2}+r_{2}$, and
(*) $\quad r_{i-1}=r_{i} q_{i+1}+r_{i+1}$ for $1<i \leq n$, with $r_{n+1}=0$.

The notion of a left Euclidean pair is defined similarly. A ring R is right quasi-euclidean if every pair (a, b) is a right Euclidean pair.
(2) A ring R is of stable range 1 if for any $(a, b) \in R^{2}$ such that $a R+b R=R$ there exists $x \in R$ such that $a+b x$ is invertible.

A History and introduction Examples and remarks

Suppose (a, b) is a right Euclidean pair with $a=b q_{1}+r_{1}$, $b=r_{1} q_{2}+r_{2}$, and
$(*) \quad r_{i-1}=r_{i} q_{i+1}+r_{i+1}$ for $1<i \leq n$, with $r_{n+1}=0$.

Suppose (a, b) is a right Euclidean pair with $a=b q_{1}+r_{1}$, $b=r_{1} q_{2}+r_{2}$, and
$(*) \quad r_{i-1}=r_{i} q_{i+1}+r_{i+1}$ for $1<i \leq n$, with $r_{n+1}=0$.

- In matrix form we get the following

$$
(a, b)=\left(r_{n}, 0\right) P\left(q_{n+1}\right) \cdots P\left(q_{1}\right)
$$

where $P(q)$ is the invertible matrix $\left(\begin{array}{ll}q & 1 \\ 1 & 0\end{array}\right)$.

Suppose (a, b) is a right Euclidean pair with $a=b q_{1}+r_{1}$, $b=r_{1} q_{2}+r_{2}$, and
$(*) \quad r_{i-1}=r_{i} q_{i+1}+r_{i+1}$ for $1<i \leq n$, with $r_{n+1}=0$.

- In matrix form we get the following

$$
(a, b)=\left(r_{n}, 0\right) P\left(q_{n+1}\right) \cdots P\left(q_{1}\right)
$$

where $P(q)$ is the invertible matrix $\left(\begin{array}{ll}q & 1 \\ 1 & 0\end{array}\right)$.

- Let us develop the right handside product of matrices:

$$
\left(\begin{array}{cc}
q_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
q_{2} & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
q_{1} q_{2}+1 & q_{1} \\
q_{2} & 1
\end{array}\right)
$$

Continuing this process we arrive at the contnuant polynomials but...this is another story!

Theorem \{Alahmadi, Jain, Lam,L.\}

For any ring R, the following are equivalent:

Theorem \{Alahmadi, Jain, Lam, L.\}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.

Theorem \{Alahmadi, Jain, Lam, L.\}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K -Hermite.

Theorem \{Alahmadi, Jain, Lam,L.\}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K -Hermite.
(C) R is a GE_{2}-ring that is right K-Hermite.

Theorem \{Alahmadi, Jain, Lam,L.\}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K -Hermite.
(C) R is a GE_{2}-ring that is right K-Hermite.
(D) For any $a, b \in R,(a, b)=(r, 0) Q$ for some $r \in R$ and $Q \in \mathrm{GE}_{2}(R)$.

Theorem \{Alahmadi, Jain, Lam,L.\}

For any ring R, the following are equivalent:
(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K -Hermite.
(C) R is a GE_{2}-ring that is right K-Hermite.
(D) For any $a, b \in R,(a, b)=(r, 0) Q$ for some $r \in R$ and $Q \in \operatorname{GE}_{2}(R)$.
(E) For any $a, b \in R,(a, b)=(r, 0) Q$ for some $r \in R$ and $Q \in \mathrm{E}_{2}(R)$.

More properties

Theorem \{Alahmadi, Jain, Lam, L.\}
 (a) Any unit regular ring is (right and left) quasi-Euclidean.

More properties

Theorem \{Alahmadi, Jain, Lam,L.\}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right quasi-Euclidean.

More properties

Theorem \{Alahmadi, Jain, Lam,L.\}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right quasi-Euclidean.
(c) For any ideal I if R is right quasi-Euclidean then R / I is right quasi-Euclidean.

More properties

Theorem \{Alahmadi, Jain, Lam,L.\}

(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right quasi-Euclidean.
(c) For any ideal I if R is right quasi-Euclidean then R / I is right quasi-Euclidean.
(d) Let R be a right Bézout ring and I be any ideal contained in the Jacobson radical $J(R) . R / I$ is right quasi-Euclidean iff R is right quasi Euclidean.

More properties

Theorem \{Alahmadi, Jain, Lam,L.\}
(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right quasi-Euclidean.
(c) For any ideal I if R is right quasi-Euclidean then R / I is right quasi-Euclidean.
(d) Let R be a right Bézout ring and I be any ideal contained in the Jacobson radical $J(R) . R / I$ is right quasi-Euclidean iff R is right quasi Euclidean.
(e) A right Bézout semi-local ring is right quasi-euclidean.

More properties

Theorem \{Alahmadi, Jain, Lam, L.\}
(a) Any unit regular ring is (right and left) quasi-Euclidean.
(b) A matrix ring over a right quasi-Euclidean ring is right quasi-Euclidean.
(c) For any ideal I if R is right quasi-Euclidean then R / I is right quasi-Euclidean.
(d) Let R be a right Bézout ring and I be any ideal contained in the Jacobson radical $J(R) . R / I$ is right quasi-Euclidean iff R is right quasi Euclidean.
(e) A right Bézout semi-local ring is right quasi-euclidean.
(f) If R and S are two right quasi-Euclidan rings then $R \times S$ is right quasi-Euclidean.

Theorem \{Alahmadi, Jain, Lam,L.\}

A domain R is right quasi-Euclidean if and only if R is a projective-free GE_{2}-ring such that every matrix $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ is a product of idempotents in $\mathbb{M}_{2}(R)$.

Theorem \{Alahmadi, Jain, Lam,L.\}

A domain R is right quasi-Euclidean if and only if R is a projective-free GE_{2}-ring such that every matrix $\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ is a product of idempotents in $\mathbb{M}_{2}(R)$.

Theorem \{Alahmadi, Jain, Lam,L.\}

Let $A \in M_{n}(R)$ where R is a right and left quasi Euclidean ring. Then:
(1) $I(A) \neq 0$ if and only of $r(A) \neq 0$.
(2) If $I(A) \neq 0$ then A is a product of idempotent matrices.

The proof of (2) in the above theorem follows the line of the one given by Laffey given for classical commutative Euclidean domains.

The importance of the GE property for decomposing matrices into idempotents can be easily seen from the following somewhat technical result:

Lemma

If R is a $G E$ ring and $B \in G L_{n}(R)$, then the matrix

$$
\left(\begin{array}{ll}
B & C \\
0 & 0
\end{array}\right)
$$

is a product of idempotent matrices.

The importance of the GE property for decomposing matrices into idempotents can be easily seen from the following somewhat technical result:

Lemma

If R is a $G E$ ring and $B \in G L_{n}(R)$, then the matrix

$$
\left(\begin{array}{ll}
B & C \\
0 & 0
\end{array}\right)
$$

is a product of idempotent matrices.
Salce and Zanardo analyzed the relation between the two decompositions. They studied the case of commutative domains but their results were generalized to a noncommutative domains by Facchini and Leroy. To present the latter result we need to introduce a few notions
Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam Singular matrices as products of idempotents matrices

Definitions

- Let A, B, C be three right R-modules and $\alpha: A \rightarrow B, \beta: B \rightarrow C$ be homomorphisms. We say that the pair (α, β) is a consecutive pair if $\operatorname{im}(\alpha) \oplus \operatorname{ker}(\beta)=B$

Definitions

- Let A, B, C be three right R-modules and $\alpha: A \rightarrow B, \beta: B \rightarrow C$ be homomorphisms. We say that the pair (α, β) is a consecutive pair if $\operatorname{im}(\alpha) \oplus \operatorname{ker}(\beta)=B$
- We say that a ring R is right n-regular if for every $n \times n$ invertible matrix $M=\left(b_{i j}\right) \in M_{n}(R)$ there exists some $i, j=1,2, \ldots, n$ such that $r\left(b_{i j}\right)=0$.

Definitions

- Let A, B, C be three right R-modules and $\alpha: A \rightarrow B, \beta: B \rightarrow C$ be homomorphisms. We say that the pair (α, β) is a consecutive pair if $\operatorname{im}(\alpha) \oplus \operatorname{ker}(\beta)=B$
- We say that a ring R is right n-regular if for every $n \times n$ invertible matrix $M=\left(b_{i j}\right) \in M_{n}(R)$ there exists some $i, j=1,2, \ldots, n$ such that $r\left(b_{i j}\right)=0$.
- Let r, n be integers, $0 \leq r \leq n$. For a ring R we define $\mathcal{F}_{n, r}:=\left\{A \subseteq R_{R}^{n} \mid A \cong R_{R}^{r}\right.$ and $\left.R_{R}^{n} / A \cong R_{R}^{n-r}\right\}$

Theorem \{Facchini, L.\}

R a ring with IBN and $n \geq 1$. Suppose R is m-right regular for every $m \leq n$ and that for any two decompositions of $R^{n}=A \oplus X=Y \oplus B$ with A, B free right of ranks, respectively, $n-1,1$, the submodules X, Y are free right R-modules. T.F.A.E.:
$\left(\mathrm{HI}_{n, 1}\right)$ For every free direct summands $A \subseteq{ }^{\oplus} R_{R}^{n}$ and $B \subseteq{ }^{\oplus} R_{R}^{n}$, with A, B free R-modules of rank $n-1,1$ respectively, there exists an endomorphism β of R_{R}^{n} with $\operatorname{im}(\beta)=A$ and $\operatorname{ker}(\beta)=B$, which is a product $\beta=\varepsilon_{1} \ldots \varepsilon_{k}$ of consecutive idempotent $\left(\mathcal{F}_{n, n-1}, \mathcal{F}_{n, 1}\right)$-endomorphisms.

Theorem \{Facchini, L.\}

R a ring with IBN and $n \geq 1$. Suppose R is m-right regular for every $m \leq n$ and that for any two decompositions of $R^{n}=A \oplus X=Y \oplus B$ with A, B free right of ranks, respectively, $n-1,1$, the submodules X, Y are free right R-modules. T.F.A.E.:
$\left(\mathrm{HI}_{n, 1}\right)$ For every free direct summands $A \subseteq{ }^{\oplus} R_{R}^{n}$ and $B \subseteq{ }^{\oplus} R_{R}^{n}$, with A, B free R-modules of rank $n-1,1$ respectively, there exists an endomorphism β of R_{R}^{n} with $\operatorname{im}(\beta)=A$ and $\operatorname{ker}(\beta)=B$, which is a product $\beta=\varepsilon_{1} \ldots \varepsilon_{k}$ of consecutive idempotent $\left(\mathcal{F}_{n, n-1}, \mathcal{F}_{n, 1}\right)$-endomorphisms.
(GE_{n}) Every invertible $n \times n$ matrix is a product of elementary matrices.

Question and particular matrices

Question

Main Question : Can real nonnegative singular matrices be decomposed into product of nonnegative idempotents?

Question and particular matrices

Question

Main Question: Can real nonnegative singular matrices be decomposed into product of nonnegative idempotents ?

Lemma

Particular matrices

(a) If $B \in M_{n \times n}\left(\mathbb{R}^{+}\right)$is an $n \times n$ matrix which is a product of nonnegative idempotents, then the same is true for the matrix $\left(\begin{array}{ll}B & C \\ 0 & 0\end{array}\right)$ where $C \in M_{n \times 1}\left(\mathbb{R}^{+}\right)$and the other blocks are of appropriate sizes.
(b) If $A \in M_{n}(\mathbb{R})\left(\right.$ resp. $A \in M_{n}\left(\mathbb{R}^{+}\right)$), $n \geq 3$, has all its $i^{\text {th }}$ rows and columns zero whenever $i \geq 3$, then A is a product of

Rank one

Proposition \{Alahmadi, Jain, Sathaye, L.\}

Let $A \in M_{n}\left(\mathbb{R}^{+}\right), n>1$, be a nonnegative matrix of rank 1 . Then A is a product of nonnegative idempotent matrices.

Rank one

Proposition \{Alahmadi, Jain, Sathaye, L.\}

Let $A \in M_{n}\left(\mathbb{R}^{+}\right), n>1$, be a nonnegative matrix of rank 1 . Then A is a product of nonnegative idempotent matrices.

Remark (A.,J.L.,S.)

It can be shown that in fact rank 1 nonnegative matrices can be decomposed into a product of three nonnegative idempotent matrices.

Rank two

Theorem \{A., J.,L.\}
Let $A \in M_{n}\left(\mathbb{R}^{+}\right), n>2$, be a nonnegative singular matrix of rank 2. Then A is a product of nonnegative idempotent matrices.

Rank two

Theorem \{A.,J.,L. $\}$
Let $A \in M_{n}\left(\mathbb{R}^{+}\right), n>2$, be a nonnegative singular matrix of rank 2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows of the matrix can be expressed as nonnegative linear combinations of two generating rows.

Rank two

Theorem \{A.,J.,L. $\}$
Let $A \in M_{n}\left(\mathbb{R}^{+}\right), n>2$, be a nonnegative singular matrix of rank 2. Then A is a product of nonnegative idempotent matrices.

The proof is based on the fact that when the rank is two the rows of the matrix can be expressed as nonnegative linear combinations of two generating rows.
This theorem is no longer valid for matrices with rank >2.

counter-example

For singular nonnegative matrices of higher rank the decomposition does not necessarily exist:

Example

$$
A_{\alpha}:=\left(\begin{array}{cccc}
\alpha & \alpha & 0 & 0 \\
0 & 0 & \alpha & \alpha \\
\alpha & 0 & \alpha & 0 \\
0 & \alpha & 0 & \alpha
\end{array}\right), \quad \text { where } \alpha \in \mathbb{R}^{+}, \alpha \neq 0
$$

If $A_{\alpha}=E_{1} \ldots E_{n}$ is such that $E_{i}^{2}=E_{i} \in M_{n}\left(\mathbb{R}^{+}\right)$then $A_{\alpha}=A_{\alpha} E_{n}$ and a direct computation shows that $E_{n}=I d$.. Remark that $A_{\frac{1}{2}}$ is a positive doubly stochastic matrix.

Nilpotent matrices

Proposition $\{$ Jain, Goel $\}$

If A is Nonnegative nilpotent there exists a permutation matrix such that $P A P^{t}$ is an upper triangular nonnegative matrix.

Nilpotent matrices

Proposition $\{$ Jain, Goel $\}$

If A is Nonnegative nilpotent there exists a permutation matrix such that $P A P^{t}$ is an upper triangular nonnegative matrix.

Corollary

Nonnegative nilpotent matrices are product of nonnegative idempotent matrices.

Hannah and O'Meara

Hannah and O'Meara published several interesting results on the decomposition of nonunit elements of a regular ring into idempotents.

Theorem

If an element a of a regular ring R is a product of k idempotents then $(1-a) R \leq k$.rann (a).

Corollary

An element a in a unit regular ring is a product of idempotents if and only if $R . r a n n(a)=R(1-a) R$.

Hannah and O'Meara also proved the following remarkable result:

Theorem

Let R be one of the following rings: (i) unit regular, (ii) right continuous, or (iii) a factor ring of a right self-injective ring. Then a is a product of idempotents if and only if

$$
R \cdot \operatorname{rann}(a)=R(1-a) R=\operatorname{lann}(a) \cdot R
$$

A ring R is separative if for all finitely generated projective modules, A, B

$$
A \oplus A \simeq A \oplus B \simeq B \oplus B \quad \text { implies } \quad A \simeq B
$$

Equivalently, $2 A \cong 2 B$ implies $A \cong B$

Theorem

Let R be a regular ring. Then the separativity of R is equivalent to the fact that an element is a product of idempotents if and only of $R \cdot \operatorname{rann}(a)=R(1-a) R=\operatorname{lann}(a) \cdot R$

It is worthy to mention that no example of a regular ring that is not separative is known. This is certainly one of the most important open problems in regular rings.

Thank you for your attention.

